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Abstract. We introduce a concept for random tilings which, comprising the conventional one,
is also applicable to tiling ensembles without height representation. In particular, we focus
on the random tiling entropy as a function of the tile densities. In this context, and under
rather mild assumptions, we prove a generalization of the first random tiling hypothesis which
connects the maximum of the entropy with the symmetry of the ensemble. Explicit examples
are obtained through the re-interpretation of several exactly solvable models. This also leads to
a counterexample to the analogue of the second random tiling hypothesis about the form of the
entropy function near its maximum.

1. Introduction

Perfect quasiperiodic tilings provide useful tools for the description of certain
thermodynamically stable quasicrystals [26, 32, 49], at least for their averaged structure.
However, it is widely accepted that the perfect structure is an idealization, and that a
systematic treatment of defectiveness is necessary for all but a few quasicrystals [12, 18, 30].
In particular, starting from the perfect structure, the inclusion of local defects [12] is
helpful to overcome a number of pertinent problems, ranging from the observed degree of
imperfections [15] to the impossibility of strictly local growth rules for perfect quasiperiodic
patterns [50].

An alternative approach relies on a stochastic picture and adds an entropic side to
the stabilization mechanism. Its most prominent representatives are usually formulated in
terms of so-called random tilings [18, 29, 30]. It has long been argued that such stochastic
tilings should provide a more realistic description both of the structures with their intrinsic
imperfections and of their stabilization, which is then mainly entropic in nature.

Recently, improved methods have been suggested [34] to test this hypothesis in practice,
and the results support the claim that such models are realistic and relevant [35]. Further
impetus is given by the very recent progress to grow (almost) equilibrium random tilings
on the computer [33] in suitable grand-canonical ensembles.

The concept of entropic stabilization applies to a wide class of—not necessarily
quasicrystalline—tiling ensembles (defined through a set of prototiles and packing rules).
However, within the original approach to random tilings (see [30] for a review), only a (while
interesting) rather special subset of these can be described. This is because two concepts are
mixed here that, in principle, have nothing to do with each other: the mechanism of entropic
stabilization and the concept of phason strain, the latter being used for the description of
quasicrystalline order for those tilings that allow a so-called height interpretation. Hereby,
the phasonic language is used throughout, restricting the range of applicability.
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In this paper, we propose a more elementary and, at the same time, more rigorous point
of view which directly employs the densities of the tiles to describe the phase diagram.
While allowing adequate generality, the new picture conforms to the other one, if this
exists—at least, if the relation between the tile densities and the strain parameters is locally
linear.

This reformulation is, however, not done for mere aesthetic reasons, but has a number
of advantages and leads to consequences of direct interest. In particular, the generality
of the approach now makes classes of exactly solvable models accessible—e.g. examples
compatible withcrystallographicsymmetries—which already show a variety of interesting
and typical phenomena.

For an explicit result, let us mention the two so-called random tiling hypotheses. The
validity of these hypotheses is the usual set-up for an elastic theory in order to show the
existence of a diffraction pattern with Bragg peaks for three-dimensional tilings, see [30]
and, for a recent discussion of experimental results, [17]. The first hypothesis assumes
that the point of maximum entropy in the phase space is one of maximal symmetry. We
will show below how it can be derived from more basic assumptions as a consequence,
and need not be stated as a hypothesis. The second hypothesis uses the phasonic picture
of quasicrystals to establish a kind of elastic theory. The hypothesis would now state that
the entropy is locally a quadratic function of the densities near its maximal value, and the
Hessian can be interpreted as an entropic elasticity tensor. However, this picture should be
taken with a pinch of salt: we shall show a counterexample where the maximum is unique,
but coincides with a second-order phase transition and is thusnot of quadratic nature.

In the conventional set-up much information, such as elastic constants and diffraction
properties, are extracted from the correlations of the height variables. The fundamental
variable analogous to the height correlations in our picture turns out to be thecovariance
matrix of the tile numbers.

Let us sketch how the paper is organized. The following section is devoted to the
introduction of our concept and the thermodynamic formalism used. After a brief discussion
of the class of (generalized) polyomino tilings [23], which comprises all our examples, we
will illustrate our concepts by simple examples in one dimension. In the section on symmetry
versus entropy, we present an argument on how to derive the first random tiling hypothesis
from elementary assumptions. This is then substantiated by various planar examples, where
our focus is on the re-interpretation of exactly solvable models which thereby gain a slightly
different interpretation and, eventually, even another application. Our examples are mainly
taken from dimer models, but also the three-colouring model on the square lattice and hard
hexagons are discussed.

2. Set-up and preliminaries

In this section, we describe how we deal with random tilings. Since we do not wish to use
the special and somewhat restrictive phasonic picture for our fundamental definitions, these
will differ from those given elsewhere [30].

As a (random) tiling we define a face-to-face space filling with tiles from a finite
set of prototiles, without any gaps or overlaps. There might be a number of additional
local packing rules specifying the allowed tilings. The number of allowed patches should
increase exponentially with the volume of the patch (and hence with the number of tiles),
resulting in a positive entropy density for the tiling ensemble, which we then call arandom
tiling ensemble. For the tiling ensemble to be homogeneous, prototile shapes and packing
rules should admit tilings containing all sorts of tiles (with positive density), otherwise the
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ensemble splits into different subensembles that must be taken into account separately.
With this setting, random tilings in the sense of [30] are included as a proper subset.

In order to give the thermodynamic limit a precise meaning, we formalize the definition as
follows.

For a random tiling of the spaceRd , its prototiles Ti are compact, connected subsets
of Rd of positive volumeli , homeomorphic to balls. Let3 ⊂ Rd be given as a connected,
compact set of positive volumeV (3). We now have to explain our notion of a patch.
If P3 is a collection of translated prototiles, we callP3 a 3-patch iff P3 is a covering
of 3 (without gaps) such that each element ofP3 has a nonempty intersection with3,
and every two elements ofP3 have an empty common interior. We call two3-patches
equivalent iff they are translates of each other. For fixed prototile numbersn1, . . . , nM
(with corresponding densitiesρi = lini/V (3)), let us denote the number of nonequivalent
3-patches byg3(n1, . . . , nM).

It should be stressed here that, in principle, we can impose any type of boundary
conditions for our definitions. However,free boundary conditionsare the natural ones to
choose from a physical point of view—a different choice may indeed lead to deviating
results; fixed boundary conditions in particular seem to be too restrictive in most cases
[54, 19, 43, 24]. On the other hand, most of the exact results have been obtained by the use
of periodic boundary conditions, and it must be shown, for each example, that the results
also apply to the case of free boundary conditions.

We will use a grand-canonical formulation in the following, in contrast to the (usual)
canonical treatment of tiling ensembles [30, 44], as we believe that an ensemble with
fluctuating tile numbers is an adequate set-up to cover processes such as local rearrangements
or tiling growth. Moreover, this formulation will prove advantageous for our arguments and
practical calculations.

As we are interested in configurational entropy only, we will assign equal (zero) energy
to every prototile. In this situation, the chemical potentials of the prototiles are the only
parameters remaining. As variables conjugate to the densities, we introduce chemical
potentialsµi as well as activitieszi = eµi for every prototile†, (i = 1, . . . ,M), and define
the grand-canonical partition function to be the configuration generating function

Z3(µ1, . . . , µM) =
∑

n1,...,nM

g3(n1, . . . , nM)z
`1n1
1 · . . . · z`MnMM . (1)

Since we are interested in the entropic behaviour of large systems, we define the grand-
canonical potential‡ per unit volume to be the limit

φ(µ1, . . . , µM) = lim
3→∞

1

V (3)
logZ3(µ1, . . . , µM). (2)

Here,{3} is any collection of connected, compact subsets ofRd of positive volumeV (3)
such that lim3→∞ V (3) = ∞ and lim3→∞ B(3)/V (3) = 0, whereB(3) denotes (the
maximum) over thevolume of the boundary tilesof any3-patch, in the same spirit as the
van Hove limit taken for ensembles in statistical mechanics [55]. For models of physical
relevance, the thermodynamic limit defined that way should exist for all physical quantities
and should be independent of the special choice of the limit sequence{3}.

The mean (volume) densities̄ρi of the different prototiles in this ensemble (i =

† We suppress extra prefactorsβ in all definitions below.
‡ If Boltzmann factors are taken instead of activities, this corresponds to the (canonical) free energy in statistical
mechanics.
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1, . . . ,M) can be computed as

ρ̄i(µ1, . . . , µM) = lim
3→∞

1

V (3)
〈lini〉3 = ∂φ(µ1, . . . , µM)

∂µi
(3)

where 〈 〉3 denotes the finite-size ensemble average for given chemical potentials
µ1, . . . , µM .

Note that all physical quantities defined here areensemble averages. In cases where
these quantities differ from corresponding values of atypical representative of the ensemble,
one has to reflect whether the grand-canonical set-up fits the experimental situation, or if a
canonical ensemble is the correct choice. Bear in mind, however, that the van Hove limit
is not properly defined for single tilings that are not self-averaging. Thus either canonical
and grand-canonical thermodynamics coincide, or the canonical picture is likely not to be
well defined at all.

So far, the chemical potentials and also the conjugated (mean) densities do not form
an independentset of macroscopical parameters to describe the ensemble. We always have∑M

i=1 ρ̄i = 1 as normalization constraint, and in general, the tile geometries and packing
rules may impose further constraints on the densities.

In order to make the notion of macroscopical independence precise, letv =∑ vjnj 6= 0
be an arbitrary linear combination of some prototile numbersnj , with real coefficientsvj .
We call the accompanying set of tile densities{ρ̄j } independentin the thermodynamic limit,
iff the variance per unit volume ofv is strictly positive for any choice of thevj :

〈〈v〉〉 := lim
3→∞

1

V (3)
〈(v − 〈v〉3)2〉3 > 0. (4)

The degrees of freedomof the tiling ensemble are given by a maximal set of independent
densities. One checks that, with this definition, normalization reduces the independent
densities by one, and there is no additional freedom due to surface effects or subclasses of
the ensemble that do not contribute entropically.

In general, since the average taken in (4) depends on the chemical potentials, the variance
of somev may vanish only for a special choice of the potentials leading to a reduction of
independent densities at isolated points of the phase space. Also, one has to expect nonlinear
constraints which would show up pointwise through appropriate linearizations. However,
no such thing will happen in any of the examples we discuss in the following and, for
simplicity, we exclude this possibility.

Let us mention a consequence of this definition for the covariance matrix† κij of the
tile numbers(i, j = 1, . . . ,M), in the thermodynamic limit:

κij = lim
3→∞

1

V (3)
(〈lini lj nj 〉3 − 〈lini〉3〈lj nj 〉3) = ∂ρ̄i

∂µj
. (5)

This matrix describes tile fluctuations around the mean density and correlations among
different tiles. A straightforward calculation shows that (5) is indeed strictly positive iff it
is restricted to the subspace of density parameters chosen to be independent, according to
the above definition.

In general, a linear constraint on the tile numbers of the form

M∑
j=1

vj (ljnj ) = cV (3)+O(V α(3)) (α < 1, c ∈ R) (6)

† This matrix corresponds to the isothermal compressibility in the thermodynamic situation.
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leads to linear variation of the grand-canonical potential in certain coordinate directions:

φ(µ1+ v1t, . . . , µM + vMt) = φ(µ1, . . . , µM)+ ct (t ∈ R). (7)

For each constraint of this form, we can shift a single chemical potential to zero in the
grand-canonical potential by a suitable choice oft .

Let us choose an independent subset of macroscopic parameters,ρ̄1, . . . , ρ̄k say, which
we abbreviate as{ρ̄}, and write the random tiling entropy as a function of these independent
densities. According to the considerations above, this can be done as follows. We set
µk+1 = · · · = µM = 0 in (1), i.e. we normalize the grand-canonical potential by an
appropriate choice of the origin of the energy scale. We call the normalized grand-canonical
potentialφ again. From (7) and (3) it is readily verified that the normalization ofφ leaves
the independent densities invariant.

The (grand-canonical) entropy per unit volume as a function of the independent (mean)
tile densities is obtained as a Legendre transform of the (normalized) grand-canonical
potential† with respect to the conjugated chemical potentials,

s(ρ̄1, . . . , ρ̄k) = φ(µ1({ρ̄}), . . . , µk({ρ̄}))−
k∑
i=1

ρ̄iµi({ρ̄}). (8)

Note that the Legendre transform is well defined owing to the nonsingularity of the matrix

∂2φ(µ1, . . . , µk)

∂µi∂µj
= κij (i, j = 1, . . . , k). (9)

Let us locate the maximum of the entropy curve as a function of the independent densities
ρ̄1, . . . , ρ̄k. We have by definition

∂s({ρ̄})
∂ρ̄j

= −µj({ρ̄}) (j = 1, . . . , k). (10)

It follows that the entropy is extremal,smax = φ, at µ1 = · · · = µk = 0. (For the grand-
canonical potential (2) this point occurs atµ1 = · · · = µM = 0.) This is the situation of
the maximal random ensemble where each configuration is weighted equally. Let us take a
closer look at the Hessian, the matrix of the second derivative

∂2s({ρ̄})
∂ρ̄i∂ρ̄j

= −∂µj ({ρ̄})
∂ρ̄i

= −(κ−1)ij (i, j = 1, . . . , k). (11)

If s is locally C3, we conclude that the entropy is a concave function everywhere. On the
other hand, also in the vector space of the independent densities, the variance ofv and hence
the covariance matrix (5) may diverge in the thermodynamic limit for certain values of the
chemical potentials. This generally occurs at phase transitions. In this case, the Hessian of
the entropy has 0 as an eigenvalue in the large system limit; we will give an example below
where this happens at the point of maximum entropy. For all other situations, the shape of
the entropy curve near its maximum is completely determined by the Hessian.

We interpret the negative of the Hessian, at the point of maximum entropy, as a tensor of
entropic elasticity. Without any further symmetry, we refer to its eigenvalues as theelastic
constantsof the random tiling ensemble. We will define a symmetry-adapted version in the
section on symmetry.

† In most cases of physical relevance this definition coincides with the microcanonical one [51]. For a number
of examples in what follows this can be shown explicitly.
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Figure 1. Each polyomino tiling is a polymer configuration on the dual cell complex.

3. Polyomino tiling ensembles

A class of (crystallographic) tilings that allow a re-interpretation of many exactly solved
models are the (generalized) polyomino tilings, see [23, 43] for definitions and background
material. Their prototiles are taken from one or combinations of several elementary cells of
a given periodic graph. There may be certain packing rules as well, resulting in restricted
random tiling ensembles. We will give a number of examples of tilings consisting of
monominoes and dominoes.

The simplest class of random tilings are tilings of (coloured) monominoes without
further restrictions. For lattices of any dimension, this results in Bernoulli ensembles [53].
A natural way to impose packing rules for these models is to exclude the occurrence of
clusters with monominoes of the same colour. For nearest-neighbour exclusion on lattices,
the restriction is hierarchical: the tiling can be regarded as being built from consecutive
layers of ‘hypertilings’ with additional constraints along the layer direction. In this case,
the entropy is bounded by the entropy of the corresponding hypertiling ensemble. Several
two-dimensional examples are discussed below.

We should mention the one-to-one correspondence between polyomino tilings on a
periodic graph3 and polymer arrangements on the dual cell complex3∗ (the so-called
Delone complex). This is illustrated in figure 1 for a simple case, the monomer–dimer
system on the square lattice.

Owing to this connection, the (pure) domino problem can be solved in a number of
cases in two dimensions, as the dual fully packed dimer problem allows the exact solution
on planar graphs by means of Pfaffians†. This has been shown by Kasteleyn in [38, 39],
where he computed the entropy of dimers on the square lattice. It is even possible to
compute densities of finite patches explicitely, which has recently been shown by Kenyon
[40]. We will treat two examples representing the different types of critical behaviour of
the solvable domino systems [48]: systems of Onsager type (with logarithmic singularity of
the covariance matrix) and systems of Kasteleyn type (with square-root singularity of the
covariance matrix).

Let us consider monomino–domino tilings without restriction next. The one-dimensional
system will be discussed below. In two dimensions, there are various connections with
other models, e.g. for the triangle–rhombus tiling on the triangular lattice [59], but, to our
knowledge, no explicit exact solutions. On the other hand, as follows from the theory of
monomer–dimer systems [28], phase transitions can only occur for tilings withvanishing
monomino density, regardless of the dimensionality of the system—these phases are the
(pure) domino tilings mentioned above. There is at least one monomino–domino tiling with
constraints that allows an exact solution in two dimensions: the tiling on the hexagonal

† For an introduction into the Pfaffian method, we refer to appendix E of [57].
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lattice together with the exclusion of neighbouring dominoes on different sublattices. This
tiling ensemble is equivalent to the ensemble of hard hexagons [9, 11], see below.

4. Unrestricted and one-dimensional examples

The simplest class of random tilings, built fromM coloured monominoes on an arbitrary
lattice, can be described purely combinatorially. There are no local constraints or packing
rules, and thus no global constraints for the densities besides normalization. One application
of this model is the description of unrestricted chemical disorder in multicomponent alloys
[6].

The thermodynamic limit may be taken by counting the number of monomino
configurations on consecutive lines of lengthN . In this simple case, the densities† ρi
can be given as explicit expressions of the activities:

ρi = zi

z1+ · · · + zM (i = 1, . . . ,M). (12)

In order to eliminate the normalization constraint, we chooseρ1, . . . , ρM−1 as independent
densities and normalize the grand-canonical potential via

φ̃(µ1, . . . , µM−1) := φ(µ1, . . . , µM−1, 0). (13)

Both functions are related via (7),

φ̃(µ1− µM, . . . , µM−1− µM) = φ(µ1, . . . , µM)− µM. (14)

We obtain the entropy as a Legendre transform of the normalized grand-canonical potential,

s(ρ1, . . . , ρM−1) = −
M∑
j=1

ρj logρj (15)

whereρM = 1−∑M−1
j=1 ρj . This coincides with the entropy of a Bernoulli system [53] with

fixed frequenciespi = ρi . The entropy function is strictly concave and takes its (unique)
maximum at the pointρ1 = · · · = ρM = 1

M
, with value

smax= −
M∑
j=1

1

M
log

1

M
= logM. (16)

Near its maximum, the entropy curve is a quadratic function of the independent order
parameters. Its shape near this point is completely determined by the Hessian

∂2s

∂ρi∂ρj

∣∣∣∣
s=smax

= −(ρ−1
M + ρ−1

i δij )|s=smax = −M(1+ δij ) (17)

(with i, j = 1, . . . ,M − 1). The negative Hessian is the elastic tensor. In particular, for
M = 2, we obtain

s(ρ) = log 2− 2(ρ − 1
2)

2+O((ρ − 1
2)

4) (18)

which (with E = 2ρ − 1) conforms to the phasonic expression given in [30].
Owing to the lack of geometric or other constraints, this class of examples is fully

controlled by the strong law of large numbers [7]: with probability one, for a given member
of the ensemble, the probability to occupy a position with a tile of typej is its frequency,
pj . This even connects the growth with the equilibrium properties, as also observed recently
for other, more complicated ensembles [33].

† We suppress the overbar and writeρi instead ofρ̄i from now on.
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A first natural step to examine the effect of different tile geometries as well as of certain
packing rules is to allow these in one coordinate direction. Introducing different tile sizes,
one of the simplest models is the one-dimensional monomino–domino model [28].

Similar to the previous example, the only constraint of this model is due to density
normalization. We eliminate this constraint in the same way, i.e. we write

ZN(µ) =
N∑
k=0

gN(k)z
k (19)

wheregN(k) is the number of connected patches withN occupied sites,k of which are
monominoes. So,µ = logz is the chemical potential of a monomino. Obviously,ZN(µ)
fulfils the Fibonacci-type recursion formula

ZN(µ) = zZN−1(µ)+ ZN−2(µ)

Z0 := 1 Z1(µ) = z.
(20)

The quotientZN(µ)/ZN−1(µ) is a rational function whose limit, forN → ∞, exists and
can easily be calculated from (20) to be

lim
N→∞

ZN(µ)
ZN−1(µ)

=
(
z

2
+
√

1+
( z

2

)2
)
. (21)

The grand-canonical potential per site is defined throughφ(µ) = limN→∞ 1
N

logZN(µ), but
can directly be calculated from the quotient (21) as

φ(µ) = lim
N→∞

log
ZN(µ)
ZN−1(µ)

= arsinh
z

2
. (22)

We denote the monomino density byρ1 and the domino density byρ2 (ρ1 + ρ2 = 1). Let
us now write the entropy curve as a function of the monomino densityρ1. The entropy
curve can be computed from the grand-canonical potential as

s(ρ1) = φ(z(ρ1))− ρ1 logz(ρ1)

=
(
ρ1+ ρ2

2

)
log

(
ρ1+ ρ2

2

)
− ρ1 logρ1− ρ2

2
log

ρ2

2
(23)

where

ρ1(µ) = ∂φ(µ)

∂µ
= tanhφ(µ) =

z
2√

1+ ( z2)2
.

The entropy function is a strictly concave function with a quadratic maximum

smax= logτ ≈ 0.4812 (24)

at 2ρ1

ρ2
= τ ≈ 1.6180, whereτ = 1+√5

2 denotes thegolden number†. We obtain an elastic

constantλ = 5
4

√
5≈ 2.7951.

It is possible to derive a closed expression for the grand-canonical partition sum [28].
Defining PN(x) = i−NZN(2ix) transforms the recursion (20) into that of the Chebyshev
polynomials of the second kind [1] which are

PN(cosθ) = sin(N + 1)θ

sinθ
(25)

† The silver numberλ = 1+ √2 appears in the monomino–domino model of monominoes with two different
colours.
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wherefrom one obtains

ZN(µ) = 1√
1+ ( z2)2

{
cosh
sinh

}(
(N + 1) arsinh

z

2

)
for N

{
even
odd

}
. (26)

4.1. Packing rules and supertiles

So far, no further constraint or packing rule has been imposed on the ensembles. A natural
way to do this in one dimension is to exclude certain strings of consecuting tiles. In many
cases, these ensembles can be directly dealt with by recursive methods as shown above
(e.g. theM-colouring problem in one dimension), or the constraints can be eliminated by a
reformulation of the problem in terms of ‘supertiles’. Let us illustrate this for the ensemble
of chains in two monominoesa, b with the exclusion ofr consecutivea’s ands consecutive
b’s. A moments reflection shows that any allowed chain can (up to boundary tiles) uniquely
be written in supertilesAi,j , 1 6 i < r, 1 6 j < s, forming strings ofi consecutivea’s,
followed by j b’s. Vice versa, any sequence in the supertiles translates to an allowed one
in a, b.

Similarly, the ensemble of monomino chains with tilesa, b and exclusion ofbb is
equivalent to the monomino–domino model mentioned above. We give the entropy for this
ensemble via its ‘supertile’ formulation with polyominoesA = a and B = ab, starting
from a Bernoulli ensemble rather than taking different tile geometries of the supertiles into
account. The frequencies of the two models are related according to

pa = pA + pB
pA + 2pB

pb = pB

pA + 2pB

pA = 1− pb
pa

pB = pb

pa
.

(27)

It is obvious from here that the possible values ofpa, pb are restricted to

1
2 6 pa 06 pb 6 pa 6 1. (28)

As the entropy per supertile is given by

s̃(pA, pB) = −pA logpA − pB logpB (29)

the entropy per (small) monomino follows as

s(pa, pb) =
(

1+ pb
pa

)−1

s̃(pA(pa, pb), pB(pa, pb))

= pa logpa − pb logpb − (pa − pb) log(pa − pb). (30)

Taking x = 2pa − 1 as a parameter, 06 x 6 1, the entropy curve is exactly the curve of
the monomino–domino model. The maximum occurs atpa = 2+τ

5 ≈ 0.7326. We obtain an

elastic constantλ = 5
√

5≈ 11.1803.
However, already in one dimension, more complex examples may be considered. An

interesting family is provided by the ensemble of square-free words inn letters,n > 3,
which is known to display positive entropy. In fact, the value

s̃(n) = arcosh

(
n− 1

2

)
(31)

gives (for n > 4) a reasonable lower bound of it, which is asymptotically exact, but the
determination of the exact value is still an open problem [2].
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5. Entropy and symmetry

In this section we consider effects of the symmetries of a tiling ensemble on its entropy
function. It should be stressed again that the results below are derived using the grand-
canonical formalism. All physical quantities are averages over the whole tiling ensemble.
In most situations of physical relevance, however, the ensemble averages coincide with the
corresponding quantities of a typical single tiling, and all results translate to the canonical
ensemble as well. This will be the case for all examples discussed in this article.

As a symmetry of a random tiling ensemble, we define every linear bijectionSρ on the
(mean) density parameters that leaves the entropy function invariant. We write

Sρ : ρi 7→ ρ̃i =
M∑
j=1

Sijρj (i = 1, . . . ,M). (32)

Owing to the normalization constraint, the restriction ofSρ to the subspace ofindependent
density parameters where the entropy function is defined leads in general to anaffine
bijection.

Examples are obtained from bijections on the tiling ensemble which transform densities
like (32). They are symmetries of the random tiling ensemble if they respect the
thermodynamic limit, i.e. if they induce a bijection on the set of3-patches, for each3 of
a suitably chosen limit sequence{3}. The simplest examples are colour symmetries, which
permute equal prototiles of different colour. Moreover, rotations and reflections on the tiling
ensemble, together with a limit sequence of circular sets, lead togeometricsymmetries. Let
us denote every symmetry which is not of the former type ashidden symmetry. We will
discuss a random tiling with a hidden symmetry below.

In general, every linear bijection on the (mean) densities can also be represented in the
vector space of all chemical potentials; as can be verified from (3), a transformationSρ
induces the adjoint mapping

Sµ : µi 7→ µ̃i =
M∑
j=1

(S∗)ijµj (i = 1, . . . ,M) (33)

whereS∗ = (S−1)t means the matrix inverse and transpose ofS. In particular, the invariance
of the grand-canonical potential under symmetry operations (33) imposes symmetries of the
(mean) density vector field in the space of chemical potentials,

ρ̃(µ) = ρ(µ̃). (34)

We conclude immediately that symmetry related tiles having equal chemical potential
occur with thesame(mean) density. Note that the point of maximum entropy(µ = 0) is
a fixed point under any given symmetry which means that symmetries constrain possible
density parameters at the entropy maximum. This is precisely the statement of the so-called
first random tiling hypothesis:
• the point of maximum entropy is a point of maximum symmetry.
For random tilings with a height representation, maximum symmetry implies zero

phason strain,E ≡ 0 [30], so this is contained. In our setting, the conlusion above implies:
• at the point of maximum entropy, symmetry related tiles occur with equal (mean)

density.
We can further conclude, as can be read off from (34), the density vectorρ, at

the point of maximum entropy, has components only in the direction of the trivial one-
dimensional representations of the symmetry group. Thus, the symmetry determines the
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entropy maximum completely, if the representation of the symmetry group on the vector
space ofindependentdensity parameters is irreducible (and nontrivial). We will give
examples of this kind later.

Let us now focus on the transformation behaviour of the entropy function (8). This
is done most easily within a symmetry adapted parametrization. By an affine coordinate
transformation, it is always possible to introduce new independent density parameters such
that the new origin is the point of maximum entropy, and the symmetries are represented
by linear, orthogonal transformations. In many cases, the new density parameters have
a geometric interpretation in the form of densities of supertiles. Let us call these new
parametersr and assume that we are in such a frame.

The entropy is invariant under symmetry transformations,

s(r) = s(r̃). (35)

At its maximum, the entropy expansion can be written in terms of invariants of the given
symmetry group†. The form of the second-order terms is determined by the HessianH of
the entropy (the matrix of its second derivatives). The symmetries induce a transformation
behaviour of the form

H |r = (Sr)tH |r̃ Sr . (36)

SinceSr is an orthogonal transformation, itcommuteswith H at the point of maximum
entropy,

H |0S0 = S0H |0. (37)

According to Schur’s lemma [27],H |0 acts trivially on the irreducible subspaces of the
symmetry group and can thus be written as a linear combination of projectorsP (i) onto the
irreducible components,

H |0 = −
∑

λiP
(i). (38)

We refer to theλi aselastic constantsof the given random tiling. This is more appropriate
than the use of the eigenvalues since they are no longer independent in the presence of
symmetries. The quadratic term of the entropy expansion is then of the form

s2(r, r) = − 1
2

∑
λiI

(i)(r, r) (39)

where theI (i)(r, r) are the quadratic invariants defined by

I (i)(r, r) = 〈r, P (i)r〉 (40)

and〈·, ·〉 denotes the scalar product. We will give examples later on.
Now, the discussion on the relation of entropy and symmetry can be extended even

further. Above, we have always taken a set of tiles as basic elements to construct the tiling.
This is, however, not the only possibility. Instead, tilings can also be seen as being built
from bonds, vertex configurations, patches of a given volume or number of tiles, or the like.
Adopting this point of view, we can assign chemical potentials and densities to patches
or bonds rather than to the prototiles. While the number of basic elements and packing
rules may increase quite rapidly this way, the above arguments can nevertheless be repeated
without change, and we conclude that ensemble densities of symmetry related patchesof
any sizeare equal at the point of maximum entropy. If the density parameters of a typical
tiling of the ensemble coincide with their ensemble averages, then:

† For thequasicrystalfree energy as a function of perpendicular strain, this kind of argument was used in [47].
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• entropically stabilized random tilings are (with probability one)locally
indistinguishable† from their images under symmetry transformations.

This is the main result of this section. Note also, that for tilings with a height
representation, this is a much stronger statement than the demandE ≡ 0 on the phason
strain, since different densities of symmetry related patches may be compatible with the
same value for the phason strain.

6. Examples in two dimensions

6.1. The rhombus tiling—a domino tiling of Kasteleyn type with height representation

The rhombus random tiling [19, 14] is the ensemble of all coverings of the plane with 60◦

rhombi. It is also called a lozenge tiling. It is a domino tiling on the triangular lattice,
equivalent to the fully packed dimer model on the hexagonal lattice‡ [39, 58]. We discuss
it here since it is the prototype of a random tiling with height interpretation, which allows
us to demonstrate the equivalence of our approach to the conventional one, for this model.
In the following, we focus on the symmetries of the tiling and give a simple derivation of
the entropy. In the appendix, we relate the elastic constant given by Henley [29, 30] to our
result.

The symmetry of the random tiling ensemble which transforms rhombus tilings into other
allowed ones isD6 = D3 × C2. For undecorated tiles, however, the inversion symmetry
of the prototiles already enforcesC2 as (minimal) symmetry for any element of the tiling
ensemble, thusS3 ' D3 remains a relevant geometric symmetry in the space of density
parameters. There are no hidden symmetries in this case. Since all prototiles are related by
rotation, for the point of maximal entropy we immediately concludeρ1 = ρ2 = ρ3 = 1

3.
The filling constraintρ1 + ρ2 + ρ3 = 1 reduces the number of independent variables

to two. As the symmetry acts irreducibly on the remaining two-dimensional subspace,
the symmetry of the entropy function must belong to a two-dimensional irreducible
representation ofD3. It is most convenient to represent the phase space as the set of points
inside an equilateral triangle, see figure 2, this way obtaining a handy parametrization which
we call its phase diagram. We choose its centre as the origin and the vectors pointing to the
corners of the triangle as unit vectors of the different tile densities. The centre corresponds
to the point of maximal entropy, and each pointr = (r1, r2, r3) corresponds to an ensemble
with densitiesρi = ri + 1

3. The symmetries of the entropy function are then reflected in
the symmetries of the triangle. The point of maximum entropy is the only one withD3

symmetry. Along lines with equal density of two different tiles there is reflection symmetry.
The grand-canonical potential per rhombus as a function of the different tile potentials

µi = logzi (with i = 1, 2, 3) reads [58]

φ(µ1, µ2, µ3) = 1

8π2

∫ 2π

0

∫ 2π

0
log detλ(ϕ1, ϕ2) dϕ1 dϕ2

= 1

4π

∫ 2π

0
log(max{z2

1, z
2
2 + z2

3 − 2z2z3 cosϕ}) dϕ (41)

where the determinant is given by

detλ(ϕ1, ϕ2) = z2
1 + z2

2 + z2
3 + 2z1z2 cosϕ1+ 2z2z3 cosϕ2+ 2z3z1 cos(ϕ1− ϕ2).

† An introduction to equivalence concepts of tilings is given in [5].
‡ Commonly, periodic graphs are referred to as lattices. We adopt this (ab)use of language in the following.
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Figure 2. The phase space of the rhombus tiling is an equilateral triangle.

This result was obtained by taking rhombohedral patches of increasing size, together with
periodicboundary conditions. The result applies nevertheless to the corresponding limit with
free boundary conditions, as can be seen as follows. The rhombus tiling can be regarded as
a limiting case of the dart-rhombus tiling described below, where some chemical potentials
are set to−∞. This operation commutes with thefree thermodynamic limit [46], yielding
the same result as in (41).

We introduce the normalization constraint by setting

φ̃(µ1, µ2) := φ(µ1, µ2, 0). (42)

The relation betweeñφ andφ is given by

φ̃(µ1− µ3, µ2− µ3) = φ(µ1, µ2, µ3)− µ3

ρ̃1(µ1− µ3, µ2− µ3) = ρ1(µ1, µ2, µ3)

ρ̃2(µ1− µ3, µ2− µ3) = ρ2(µ1, µ2, µ3).

(43)

Let us determine the entropy curve as a function of the independent densitiesρ̃1 = ρ1 and
ρ̃2 = ρ2. From the normalized grand-canonical potentialφ̃ we obtain

z1(ρ̃1, ρ̃2) = sinπρ̃1

sinπ(ρ̃1+ ρ̃2)
z2(ρ̃1, ρ̃2) = sinπρ̃2

sinπ(ρ̃1+ ρ̃2)
. (44)

The expression for the entropy follows as

s(ρ̃1, ρ̃2) = −
∫ ρ̃1

0
logz1(ρ̃, ρ̃2) dρ̃ = −

∫ ρ̃1

0
log

sinπρ̃

sinπ(ρ̃ + ρ̃2)
dρ̃. (45)

At the point of maximum entropy we find

smax= 1

π

∞∑
k=1

sin π
3 k

k2
≈ 0.3230 (46)

which is considerably smaller than the value1
π

∑∞
k=0

(−1)k

(2k+1)2 ≈ 0.583 of the square lattice
domino problem [38].

As the irreducible representation of the symmetry group is two-dimensional, we expect
to have a single elastic constant. In fact, for the quadratic term in the entropy expansion
we find

s2(r, r) = −1

2

π√
3

2(r2
1 + r1r2+ r2

2). (47)

On the other hand, the entropy function is defined on the subspace complementary to the
vector(1, 1, 1)t . This yields

I (r, r) = 2(r2
1 + r1r2+ r2

2). (48)
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Figure 3. Entropy of the rhombus random tiling along a line of reflection symmetry.

Thus we find an elastic constant ofλ = π√
3
. In the appendix we relate this constant to the

constant given by Henley [29, 30] which was defined from the height representation of this
model.

Note that there is a phase transition at points where two densities approach zero. In
the above parametrization, this corresponds to the corners of the triangle. At these points,
the covariance matrix shows a square-root singularity [14], indicating a phase transition of
Kasteleyn type [48].

We give an expression of the entropy along a line of reflection symmetry: in the regime
ρ1 = ρ2, we have

s(ρ1) = 2

π

∫ πρ1

0
log(2 cosx) dx. (49)

This function is plotted in figure 3. The elastic constant isλ = π√
3
.

6.2. The dart-rhombus tiling—a domino tiling of Onsager type with hidden symmetry

We now present another random tiling of the domino class, but this time with two different
types of prototiles [4, 31]. It is therefore slightly more interesting than the model discussed
above. The prototiles of the dart-rhombus random tiling are 60◦ rhombi and darts made
from two rhombus halves, see figure 4. In addition to the usual face-to-face condition,
we impose an alternation condition on the rhombi, such that neighbouring rhombi of equal
orientation are excluded. Finally, to avoid pathologic lines of alternating darts, we demand
that two neighbouring darts must not share a short edge. These tiling rules force the darts
to arrange themselves in closed lines, see figures 10 and 11. We thus deal with adilute loop
model of dart loops in a background of rhombi. For more on this picture, which we will
not expand on here, see [56]. The dense loop phase has the minimal total rhombi density
ρ = 1

3, see also figure 8.
This random tiling corresponds to the fully packed dimer system on one of the so-called

Archimedian tilings (where all faces are regular polygons) [25]. Lattices and tilings of this
type have already been described in detail by Kepler [41], but have since been rediscovered
many times. In the context of statistical mechanics the graph of our model has also been
called a Fisher lattice [57], its dual graph is called a Kagomé lattice. The first solution of the
Fisher lattice dimer model was given by Fan and Wu [20] by realizing the correspondence
to a soluble subcase of the the eight-vertex model [11], the so-called free-fermion case.
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Figure 4. Prototiles of the dart-rhombus tiling and fundamental cell of the Fisher lattice.

5 2 3 2 6w =   y y z z

2 1 2w = y y y 3 3 3w = y z z 4 2 2w = y z z1 11 4w = y z z 3 6 5

2 36 3 5w =   y y z z 7 32 1 4w =   y y y z 2 3 18 1w =   y y y z

Figure 5. A mapping between the eight-vertex model and the dart-rhombus tiling via ‘supertiles’.

A one-to-one mapping between the free-fermion case of the eight-vertex model† and the
dart-rhombus tiling is obtained by a reformulation of the latter in terms of ‘supertiles’, see
figure 5. Closed dart loops in the tiling correspond to closed edge loops on the square
lattice.

Another interpretation exists as a model with domain walls where different walls can
meet and annihilate [13], in generalization of the dimer system on the hexagonal lattice,
which can also be interpreted as a domain-wall model. In our model, the domain walls
correspond to the dart loops.

Let us denote the rhombi densities byρi (i = 1, 2, 3) and the dart densities byσi
(i = 1, . . . ,6). We have several constraints on these macroscopic variables: in addition to
the filling condition, the loop condition means that densities of opposite darts have to be
the same,

σ1 = σ4 σ2 = σ5 σ3 = σ6. (50)

Moreover, as each dart is accompanied by a rhombus of equal type, the remaining rhombi
occur with equal frequency of each type owing to the alternation condition,

ρ1− σ1 = ρ2− σ2 = ρ3− σ3. (51)

These constraints reduce the number of independent parameters to three.
The group of geometric symmetries of the tiling isD3, but these are not the only

symmetries of the model: there is a hidden symmetry which exchanges darts and rhombi.
It is most easily described in the vertex model formulation where it corresponds to the
exchange of free and occupied edges (spin reversal symmetry).

The full symmetry group of the dart-rhombus tiling turns out to be thetetrahedral group
Td . As the group action respects the density constraints and acts irreducible on the remaining

† We follow the Baxter’s convention here [11].
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Figure 6. The phase space of the dart-rhombus tiling is a tetrahedron.

subspace of independent density parameters, we can characterize the phase space of the dart-
rhombus random tiling according to the three-dimensional irreducible representation of the
tetrahedral groupTd . Each phase of the dart-rhombus tiling corresponds to a point inside
the tetrahedron: we fix the tetrahedron centre as the origin and choose an orthonormal basis
of unit vectors pointing to the edges along twofold axes, as is indicated in figure 6. In this
way we obtain a parametrization in terms of reduced rhombi densities

ri = ρi − 1
6 (i = 1, 2, 3). (52)

The vectors pointing to the four corners of the tetrahedron are unit vectors for the reduced
dart densitiessi and for the reduced total rhombi densityr,

si = 2σi − 1
6 (i = 1, 2, 3)

r = r1+ r2+ r3.
(53)

In this geometry, the dense loop phase is found on the triangle surface with minimal
rhombi densityr = − 1

6. The other triangle surfaces which are obtained by the exchange
symmetry are diluted phases where the darts arrange along directed lines owing to the
exclusion of one dart orientation. On the other hand, the dense loop phase is an obvious
decoration of therhombus tiling, suggested by figure 8. We conclude that the surface phases
are of Kasteleyn type with phase transitions at the corners of the tetrahedron.

The point of maximum entropy (the tetrahedron’s centre) is fixed by symmetry toρi = 1
6,

σi = 1
12 where the darts and the rhombi occupy half of the tiling area each. The value of

the entropy at its maximum

smax= 1
3 log 2≈ 0.231 (54)

follows from a geometrical consideration: in the supertile formulation, building a rhombic
patch by starting from a prescribed configuration on the left and on the upper boundary of
a π

3 sector, there are in general two different possibilities to add a new tile. This results
in an entropy of log 2 per supertile because the choice of the boundary does not affect the
entropy value. Observing that each supertile consists of three ordinary tiles by area, one
obtains (54).

In general, phase transitions occur in regions where we have infinite dart lines which
tend to minimize the enclosed area as in percolation, see figures 10 and 11. For a more
concrete description, we introduce rhombus activitiesy1, y2, y3, dart activitiesz1, . . . , z6,
and compute the grand-canonical potential per tile via Pfaffians, yielding [57]

φ = 1

24π2

∫ 2π

0

∫ 2π

0
log detλ(ϕ1, ϕ2) dϕ1 dϕ2 (55)
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Figure 7. Entropy of the dart-rhombus random tiling in the sixfold symmetric phase as a
function of the rhombi densityρ.

where the determinant is given by

detλ(ϕ1, ϕ2) = y2
1z

2
1z

2
4 + y2

2z
2
2z

2
5 + y2

3z
2
3z

2
6 + y2

1y
2
2y

2
3 + 2y1y2(z1z2z4z5− y2

3z3z6) cosϕ1

+2y2y3(z2z3z5z6− y2
1z1z4) cos(ϕ1− ϕ2)+ 2y3y1(z1z3z4z6− y2

2z2z5) cosϕ2.

This result was obtained by usingperiodic boundary conditions. It applies, however, in the
case of nonzero activities, to the free case as well, since this has been shown by Ruelle
[55] for the more general eight-vertex model. (Note that the Kasteleyn subclass has already
been discussed above.)

Let us now proceed with the discussion of the critical behaviour as a function of the tile
densities. It is of Onsager type in the generic case [20]. At points fulfilling the criticality
condition

w1+ w2+ w3+ w4 = 2 max{w1, w2, w3, w4} (56)

the grand-canonical potential is nonanalytic, resulting in a logarithmic divergence in the
covariance matrix. Thewi (i = 1, . . . ,8) are the Boltzmann factors of the eight-vertex
model whose relation to the tile activities is given in figure 5.

The entropy as a function of the rhombi densities indeed leads to a Hessian which
is proportional to the identity. In the four-dimensional vector space of the reduced dart
densities and the reduced total rhombi density, the entropy is defined on the hyperplane
complementary to the vector(1, 1, 1, 1)t . This leads to

I (r, r) = 2(r2
1 + r2

2 + r2
3) λ = 6. (57)

Let us focus on the behaviour of the random tiling in the sixfold symmetric phase where
each orientation of darts, respectively rhombi, occurs with the same frequency. The only
free parameters are the total densityρ of the rhombi or the total densityσ of the darts, each
being equally distributed over the different orientations. The entropy curve as a function of
the rhombi densityρ is plotted in figure 7. The maximum is already discussed above; the
elastic constant in the sixfold phase isλ = 6. A phase transition of Onsager type occurs
at ρc = 5

6 with the usual logarithmic singularity in the isothermal compressibility. A phase
transition of Kasteleyn type occurs atρ = 1. The pointρ = 1

3 is the point of maximal
symmetry of the previously mentioned rhombus tiling (its maximum scaled by a factor of
3).

Below are four characteristic snapshots of tilings in the sixfold symmetric phase together
with their diffraction patterns, taken at different rhombi densities [31]. The tilings are
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h = 1800 h = 250 h = 50

h = 20 h = 2.5 h = 1

Figure 8. Minimal rhombi density (ρ = 0.33).

h = 1800 h = 250

h = 10 h = 1

Figure 9. The entropy maximum (rhombi densityρ = 0.50).

h = 1800 h = 1200 h = 250

h = 20 h = 2.5 h = 1

Figure 10. Below the phase transition (rhombi densityρ = 0.77).

periodic in the vertical direction and periodic up to a cyclic shift in the horizontal direction.
To obtain diffraction patterns, delta-scatterers were positioned in the middle of every
prototile. Figures 8–11 show contour lines of different heights (intensities) of the absolute
value of the scatterer’s Fourier transform, computed in arbitrary units.

The phase transition (at rhombi densityρc = 5
6) is directly visible in the tiling. Above
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h = 2500 h = 1800 h = 250

h = 20 h = 2.5 h = 1

Figure 11. Above the phase transition (rhombi densityρ = 0.90).

the phase transition (ρ > ρc) we have just some small dart islands (figure 11) whereas
below the phase transition (ρ < ρc) they form infinite lines as in percolation (figure 10).
The phase transition is also visible in the diffraction pictures. Above the phase transition
point, we have a small separated, sixfold symmetric background which gets connected below
the phase transition.

At the entropy maximum (figure 9), the diffuse background has maximal intensity and
is least structured whereas at minimal rhombi density (figure 8) it is still connected but
laced up.

We mention that the height of the diffraction spots scales with the system size, as follows
from our numerical analysis. The diffraction pattern in the thermodynamic limit consists
of a point part (Bragg peaks) and an absolutely continous background [3]. Although this
is not the generic result one expects for two-dimensional random tilings, it is inevitable for
this kind of crystallographic random tiling that lives on a lattice background.

6.3. Three-colourings of the square lattice—a monomino tiling violating the second random
tiling hypothesis

The three-colouring model is the ensemble of tilings with three types of monominoes such
that no two tiles of the same type are adjacent. Since the packing rule is of nearest-neighbour
type, the restriction is hierarchical, and it is instructive to look at the one-dimensional model
first. In one dimension, using the recursion method demonstrated above, the grand-canonical
potential can be shown to be the logarithm of the positive real root of the equation

x3− (z1z2+ z2z3+ z3z1)x − 2z1z2z3 = 0 (58)

thezi being the activities of the different monominoes. By construction, the entropy of this
ensemble is an upper bound for the entropy of its generalization to two dimensions.

The groupS3 of colour permutations is a symmetry for both models which also respects
the filling constraintρ1 + ρ2 + ρ3 = 1. Consequently, the maximal entropy occurs at
ρ1 = ρ2 = ρ3 = 1

3, and the thermodynamic functions are invariant under the two-
dimensional irreducible action of the symmetry group in the subspace of independent
densities. In particular, there is only a single elastic constant, which isλ = 9 for the
one-dimensional model.

Bounds for the maximal entropy can be obtained as follows. The configurations with
highest frequency of monominoes of typea are arrangements where alla’s fill one sublattice.
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Figure 12. Entropy of the three-colouring model along a line of reflection symmetry (ρ2 = ρ3)
as a function ofρ1 (heavy curve). The dotted curve represents the system with exclusion
restricted to one dimension.

As the other vertices can independently be filled by monominoes of typeb or c, we get a
lower bound for the entropy:smax> log

√
2. The one-dimensional problem, at its point of

maximal entropy, is a genuine Bernoulli-type ensemble of entropy log 2, so we found

0.3466≈ log
√

26 smax6 log 2≈ 0.6931. (59)

The given counting problem has first been solved by Baxter [8] using Bethe’s ansatz.
Introducing chemical potentialsµ1, µ2, µ3 for the different monominoes, the grand-
canonical potential reads [11]

φ(µ1, µ2, µ3) = log
8(z1z2z3)

1
3√

(u−w)3
v
−
√
(v−w)3
u

(60)

whereu, v,w are the positive real solutions of

x(3B − x)2 = 4 u > v > w (61)

whereB is given by

B = z1z2+ z2z3+ z1z3

3(z1z2z3)
1
3

. (62)

It should be stressed that this solution was obtained by making use ofperiodic boundary
conditions. The result agrees, on the other hand, with the corresponding free limit, as can
be shown [56] by generalizing an argument of Kuperberg [42].

The value at the maximum entropy is

smax= 3
2 log 4

3 ≈ 0.4315 (63)

which was previously obtained as the residual entropy of square ice [45].
It is instructive to analyse the entropy function along a line of reflection symmetry,

see figure 12. Note that the entropy at its maximum is flat, indicating a vanishing second
derivative, hence a phase transition ats = smax. The phase transition is of fluid–solid type:
below the phase transition, monominoes arrange on the lattice homogeneously, whereas
above the phase transition one sublattice is preferred in occupation [52]. The phase transition
causes a square-root singularity in the covariance matrix [8].

In fact, explicit expressions for the entropy can be given in the two phases. It turns out
that both functions are analytic on the whole interval 06 ρ1 <

1
2 and intersect smoothly at



Random tilings: concepts and examples 6405

ρ1 = 1
3. They can therefore be polynomially approximated at the entropy maximum. The

absolute values of the coefficients coincide up to fourth order; withr = ρ1− 1
3, we find

s(r) = 3

2
log

4

3
− 1

3!

92

2
|r|3− 1

4!

93

2
r4+O(r5). (64)

We conclude that the square lattice three-colouring model violates the second random tiling
hypothesis because there is no quadratic term. This means that the usual reasoning about
elastic theory [30] is not applicable here.

It would be interesting to compare this result with an expansion of the entropy in terms
of variables taken from the height interpretation of this model [16].

6.4. Hard hexagons—a monomino tiling with unexpected entropy

Our last example belongs to a tiling class with two kinds of monominoes which we call
particles and holes together with nearest-neighbour exclusion for the particles. Its one-
dimensional version has already been discussed above. The two-dimensional generalizations
to the square lattice and to the hexagonal lattice correspond to the ensembles ofhard squares
[10, 21] andhard hexagons[9, 11]. Both models show a kind of fluid–solid phase transition:
the low-density phase is homogeneous, each sublattice has the same particle density, whereas
at high density one sublattice is preferred in occupation. There is no obvious symmetry
in these models, and therefore no preferred point in the phase space where the entropy
maximum should be located.

It is interesting to mention that the three-colouring model discussed above was
interpreted as an ‘approximating’ hard squares model, with two types of holes [8, 52].
As the hard squares model itself has escaped exact solution so far, we concentrate on the
hard hexagon model in the following. The solution of this model was given by Baxter
[9, 11]. This result is again obtained fromperiodic boundary conditions. It is easy to see,
however, that it coincides with the result for the corresponding free boundary conditions,
as each free rectangular patch can be transformed into a periodic one by adding a row of
holes.

A phase transition occurs atρc = 1
τ
√

5
≈ 0.2764 (the maximal density being normalized

to 1
3) with a critical exponentα = 1

3 in the covariance matrix. The entropy is a concave
function with a quadratic maximum

smax≈ 0.333 243 atρ ≈ 0.162 433. (65)

Note that the maximum occurs near the point where the hexagons occupy half of the lattice
area. The small deviation of the entropy from13 led to an incorrect prediction† in 1978.
The elastic constant turns out to beλ ≈ 24.0807.

Joyce [36] used the theory of modular functions to write the particle activityz as an
algebraic function of the mean densityρ. Applying Joyce’s results, one can in fact find
closed expressions forsmax, ρ andλ. As these are quite complicated, we omit them here
[56].

7. Concluding remarks

We have shown, both conceptually and by a number of examples, that the densities of tiles
in random tiling ensembles provide natural parameters to investigate the phase diagram of

† For a short history of the model, see chapter 14.1 of Baxter’s book [11].
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such models. This is then independent of the existence of a height representation, but fully
consistent with it if it happens to exist.

Whereas the re-interpretation of exactly solvable models directly leads to a number of
random tilings with analytic expressions for the entropy function, it is much more difficult
to extract information about diffraction properties via Fourier transforms because this also
requires the knowledge of the autocorrelation. For simple models such as the domino tiling
and the rhombus tiling, it is possible [3] to compute the diffraction Bragg part explicitly
and also the behaviour of the diffuse background in the thermodynamic limit.

The next step in the analysis of random tilings is certainly the application of the concept
developed so far to quasicrystalline random tilings. Although there are recent exact results
on rectangle–triangle tilings [22, 37], the interpretation of some of the results, for example,
the shape of the entropy curve in the solvable regime, is subject to controversial discussion.
It may turn out that the framework of statistical mechanics proposed here gains additional
insight into the phase diagrams of the tilings.

Acknowledgments

It is our pleasure to thank Paul Pearce for several useful hints and some help with the body
of known results and Elliott Lieb for a number of clarifying discussions. We thank Chris
Henley for numerous valuable comments on the manuscript. Financial support from the
German Science Foundation (DFG) is gratefully acknowledged.

Appendix. Height interpretation of the rhombus tiling

Here, we briefly describe the connection between our description of the rhombus tiling to
the description by Henley [29, 30]. In particular, we show the connection between the
elastic constants defined by both approaches.

As was first pointed out in [14], each configuration of the rhombus tiling can be obtained
by projecting a roof-type surface in the cubic lattice to the diagonal hyperplane. In this
way, the rhombus tiling possesses a natural height representation. As the average slope of
this surface determines the average densities of the different tiles and vice versa, we can
parametrize the ensemble alternatively by some slope variables.

Let us describe this more formally. Our vector space isR3 with the standard scalar
product 〈·, ·〉. The diagonal hyperplane inR3 can be described by its normal vector
e⊥ = 1√

3
(1, 1, 1)t . We call the space spanned bye⊥ perp(endicular) spaceV ⊥ and the

complementary hyperplanephysical spaceV ‖. Let us denote the projections of vectors
x ∈ R3 to these subspaces byx⊥ resp.x‖. The perp strain tensorE is a linear map

E : V ‖ → V ⊥. (66)

E defines a hyperplane inR3. By definition,E ≡ 0 corresponds toV ‖. We define matrix
elementsE1, E2 of E:

E1e
⊥
1 := Ee‖1 E2e

⊥
2 := Ee‖2. (67)

A vector normal to this hyperplane is given by(1− E1, 1− E2, 1+ E1+ E2)
t .

We can easily relate the average slope of a surface parametrized byE = (E1, E2) to
the mean densities of the projected tiles:

ρ1 = 1
3(1− E1) ρ2 = 1

3(1− E2). (68)
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The quadratic form (47) can (withri = ρi − 1
3) be rewritten in the form

s2(E,E) = −1

2

2√
3

π

9
(E2

1 + E1E2+ E2
2). (69)

This is the expression given by Henley [29, 30] up to a constant of2√
3

which arises from
different normalizations of unit vectors in physical and perpendicular space in his set-up.
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[25] Grünbaum B and Shephard G C 1987Tilings and Patterns(New York: Freeman)
[26] Guyot P, Kramer P and Boissieu M de 1991 QuasicrystalsRep. Prog. Phys.54 1373–425
[27] Hamermesh M 1962Group Theory and its Application to Physical Problems(New York: Dover)



6408 C Richard et al

[28] Heilmann O J and Lieb E H 1970 Monomers and dimersPhys. Rev. Lett.24 1412–14
Heilmann O J and Lieb E H 1972 Theory of monomer–dimer systemsCommun. Math. Phys.25 190–232

[29] Henley C L 1988 Random tilings with quasicrystal order: transfer-matrix approachJ. Phys. A: Math. Gen.
21 1649–77

[30] Henley C L 1991 Random tiling modelsQuasicrystals: The State of the Arted D P DiVincenzo and
P Steinhardt (Singapore: World Scientific) pp 429–524
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